
7 Pandas I: Introduction

Lab Objective: Though NumPy and SciPy are powerful tools for numerical computing, they lack
some of the high-level functionality necessary for many data science applications. Python’s pandas
library, built on NumPy, is designed specifically for data management and analysis. In this lab,
we introduce pandas data structures, syntax, and explore its capabilities for quickly analyzing and
presenting data.

Series
A pandas Series is generalization of a one-dimensional NumPy array. Like a NumPy array, every
Series has a data type (dtype), and the entries of the Series are all of that type. Unlike a NumPy
array, every Series has an index that labels each entry, and a Series object can also be given a
name to label the entire data set.

>>> import numpy as np
>>> import pandas as pd

# Initialize a Series of random entries with an index of letters.
>>> pd.Series(np.random.random(4), index=['a', 'b', 'c', 'd'])
a 0.474170
b 0.106878
c 0.420631
d 0.279713
dtype: float64

# The default index is integers from 0 to the length of the data.
>>> pd.Series(np.random.random(4), name="uniform draws")
0 0.767501
1 0.614208
2 0.470877
3 0.335885
Name: uniform draws, dtype: float64
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The index in a Series is a pandas object of type Index and is stored as the index attribute
of the Series. The plain entries in the Series are stored as a NumPy array and can be accessed as
such via the values attribute.

>>> s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'], name="some ints")

>>> s1.values # Get the entries as a NumPy array.
array([1, 2, 3, 4])

>>> print(s1.name, s1.dtype, sep=", ") # Get the name and dtype.
some ints, int64

>>> s1.index # Get the pd.Index object.
Index(['a', 'b', 'c', 'd'], dtype='object')

The elements of a Series can be accessed by either the regular position-based integer index,
or by the corresponding label in the index. New entries can be added dynamically as long as a valid
index label is provided, similar to adding a new key-value pair to a dictionary. A Series can also be
initialize from a dictionary: the keys become the index labels, and the values become the entries.

>>> s2 = pd.Series([10, 20, 30], index=["apple", "banana", "carrot"])
>>> s2
apple 10
banana 20
carrot 30
dtype: int64

# s2[0] and s2["apple"] refer to the same entry.
>>> print(s2[0], s2["apple"], s2["carrot"])
10 10 30

>>> s2[0] += 5 # Change the value of the first entry.
>>> s2["dewberry"] = 0 # Add a new value with label 'dewberry'.
>>> s2
apple 15
banana 20
carrot 30
dewberry 0
dtype: int64

# Initialize a Series from a dictionary.
>>> pd.Series({"eggplant":3, "fig":5, "grape":7}, name="more foods")
eggplant 3
fig 5
grape 7
Name: more foods, dtype: int64

Slicing and fancy indexing also work the same way in Series as in NumPy arrays. In addition,
multiple entries of a Series can be selected by indexing a list of labels in the index.
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>>> s3 = pd.Series({"lions":2, "tigers":1, "bears":3}, name="oh my")
>>> s3
bears 3
lions 2
tigers 1
Name: oh my, dtype: int64

# Get a subset of the data by regular slicing.
>>> s3[1:]
lions 2
tigers 1
Name: oh my, dtype: int64

# Get a subset of the data with fancy indexing.
>>> s3[np.array([len(i) == 5 for i in s3.index])]
bears 3
lions 2
Name: oh my, dtype: int64

# Get a subset of the data by providing several index labels.
>>> s3[ ["tigers", "bears"] ]
tigers 1 # Note that the entries are reordered,
bears 3 # and the name stays the same.
Name: oh my, dtype: int64

Problem 1. Create a pandas Series where the index labels are the even integers 0, 2, . . . , 50,
and the entries are n2−1, where n is the entry’s label. Set all of the entries equal to zero whose
labels are divisible by 3.

Operations with Series

A Series object has all of the advantages of a NumPy array, including entry-wise arithmetic, plus a
few additional features (see Table 7.1). Operations between a Series S1 with index I1 and a Series
S2 with index I2 results in a new Series with index I1 ∪ I2. In other words, the index dictates how
two Series can interact with each other.

>>> s4 = pd.Series([1, 2, 4], index=['a', 'c', 'd'])
>>> s5 = pd.Series([10, 20, 40], index=['a', 'b', 'd'])
>>> 2*s4 + s5
a 12.0
b NaN # s4 doesn't have an entry for b, and
c NaN # s5 doesn't have an entry for c, so
d 48.0 # the combination is Nan (np.nan / None).
dtype: float64
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Method Returns
abs() Object with absolute values taken (of numerical data)

argmax() The index label of the maximum value
argmin() The index label of the minimum value
count() The number of non-null entries

cumprod() The cumulative product over an axis
cumsum() The cumulative sum over an axis

max() The maximum of the entries
mean() The average of the entries

median() The median of the entries
min() The minimum of the entries

mode() The most common element(s)
prod() The product of the elements
sum() The sum of the elements
var() The variance of the elements

Table 7.1: Numerical methods of the Series and DataFrame pandas classes.

Many Series are more useful than NumPy arrays primarily because of their index. For example,
a Series can be indexed by time with a pandas DatetimeIndex, an index with date and/or time
values. The usual way to create this kind of index is with pd.date_range().

# Make an index of the first three days in July 2000.
>>> pd.date_range("7/1/2000", "7/3/2000", freq='D')
DatetimeIndex(['2000-07-01', '2000-07-02', '2000-07-03'],

dtype='datetime64[ns]', freq='D')

Problem 2. Suppose you make an investment of d dollars in a particularly volatile stock. Every
day the value of your stock goes up by $1 with probability p, or down by $1 with probability
1− p (this is an example of a random walk).

Write a function that accepts a probability parameter p and an initial amount of money
d, defaulting to 100. Use pd.date_range() to create an index of the days from 1 January
2000 to 31 December 2000. Simulate the daily change of the stock by making one draw from a
Bernoulli distribution with parameter p (a binomial distribution with one draw) for each day.
Store the draws in a pandas Series with the date index and set the first draw to the initial
amount d. Sum the entries cumulatively to get the stock value by day. Set any negative values
to 0, then plot the series using the plot() method of the Series object.

Call your function with a few different values of p and d to observe the different possible
kinds of behavior.

Note

The Series in Problem 2 is an example of a time series, since it is indexed by time. Time
series show up often in data science; we will explore them in more depth in another lab.
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Method Description
append() Concatenate two or more Series.

drop() Remove the entries with the specified label or labels
drop_duplicates() Remove duplicate values

dropna() Drop null entries
fillna() Replace null entries with a specified value or strategy

reindex() Replace the index
sample() Draw a random entry
shift() Shift the index

unique() Return unique values

Table 7.2: Methods for managing or modifying data in a pandas Series or DataFrame.

Data Frames
A DataFrame is a collection of Series that share the same index, and is therefore a two-dimensional
generalization of a NumPy array. The row labels are collectively called the index, and the column
labels are collectively called the columns. An individual column in a DataFrame object is one Series.

There are many ways to initialize a DataFrame. In the following code, we build a DataFrame
out of a dictionary of Series.

>>> x = pd.Series(np.random.randn(4), ['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), ['a', 'b', 'd', 'e', 'f'])
>>> df1 = pd.DataFrame({"series 1": x, "series 2": y})
>>> df1

series 1 series 2
a -0.365542 1.227960
b 0.080133 0.683523
c 0.737970 NaN
d 0.097878 -1.102835
e NaN 1.345004
f NaN 0.217523

Note that the index of this DataFrame is the union of the index of Series x and that of Series
y. The columns are given by the keys of the dictionary d. Since x doesn’t have a label e, the value
in row e, column 1 is NaN. This same reasoning explains the other missing values as well. Note that
if we take the first column of the DataFrame and drop the missing values, we recover the Series x:

>>> df1["series1"].dropna()
a -0.365542
b 0.080133
c 0.737970
d 0.097878
Name: series 1, dtype: float64
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Achtung!

A pandas DataFrame cannot be sliced in exactly the same way as a NumPy array. Notice how
we just used df1["series 1"] to access a column of the the DataFrame df1. We will discuss
this in more detail later on.

We can also initialize a DataFrame using a NumPy array, creating custom row and column
labels.

>>> data = np.random.random((3, 4))
>>> pd.DataFrame(data, index=['A', 'B', 'C'], columns=np.arange(1, 5))

1 2 3 4
A 0.065646 0.968593 0.593394 0.750110
B 0.803829 0.662237 0.200592 0.137713
C 0.288801 0.956662 0.817915 0.951016
3 rows 4 columns

As with Series, if we don’t specify the index or columns, the default is np.arange(n), where n
is either the number of rows or columns.

Viewing and Accessing Data
In this section we will explore some elementary accessing and querying techniques that enable us to
maneuver through and gain insight into our data. Try using the describe() and head() methods
for quick data summaries.

Basic Data Access
We can slice the rows of a DataFrame much as with a NumPy array.

>>> df = pd.DataFrame(np.random.randn(4, 2), index=['a', 'b', 'c', 'd'],
columns = ['I', 'II'])

>>> df[:2]

I II
a 0.758867 1.231330
b 0.402484 -0.955039

[2 rows x 2 columns]

More generally, we can select subsets of the data using the iloc and loc indexers. The loc
index selects rows and columns based on their labels, while the iloc method selects them based on
their integer position. Accessing Series and DataFrame objects using these indexing operations is
more efficient than using bracket indexing, because the bracket indexing has to check many cases
before it can determine how to slice the data structure. Using loc/iloc explicitly, bypasses the extra
checks.



7

>>> # select rows a and c, column II
>>> df.loc[['a','c'], 'II']

a 1.231330
c 0.556121
Name: II, dtype: float64

>>> # select last two rows, first column
>>> df.iloc[-2:, 0]

c -0.475952
d -0.518989
Name: I, dtype: float64

Finally, a column of a DataFrame may be accessed using simple square brackets and the name
of the column, or alternatively by treating the label as an object:

>>> # get second column of df
>>> df['II'] # or, equivalently, df.II

a 1.231330
b -0.955039
c 0.556121
d 0.173165
Name: II, dtype: float64

All of these techniques for getting subsets of the data may also be used to set subsets of the
data:

>>> # set second columns to zeros
>>> df['II'] = 0
>>> df['II']
a 0
b 0
c 0
d 0
Name: II, dtype: int64

>>> # add additional column of ones
>>> df['III'] = 1
>>> df

I II III
a -0.460457 0 1
b 0.973422 0 1
c -0.475952 0 1
d -0.518989 0 1



8 Lab 7. Pandas I: Introduction

SQL Operations in pandas
The DataFrame, being a tabular data structure, bears an obvious resemblance to a typical relational
database table. SQL is the standard for working with relational databases, and in this section we
will explore how pandas accomplishes some of the same tasks as SQL. The SQL-like functionality of
pandas is one of its biggest advantages, since it can eliminate the need to switch between programming
languages for different tasks. Within pandas we can handle both the querying and data analysis.

For the following examples, we will use the following data:

>>> #build toy data for SQL operations
>>> name = ['Mylan', 'Regan', 'Justin', 'Jess', 'Jason', 'Remi', 'Matt', '←↩

Alexander', 'JeanMarie']
>>> sex = ['M', 'F', 'M', 'F', 'M', 'F', 'M', 'M', 'F']
>>> age = [20, 21, 18, 22, 19, 20, 20, 19, 20]
>>> rank = ['Sp', 'Se', 'Fr', 'Se', 'Sp', 'J', 'J', 'J', 'Se']
>>> ID = range(9)
>>> aid = ['y', 'n', 'n', 'y', 'n', 'n', 'n', 'y', 'n']
>>> GPA = [3.8, 3.5, 3.0, 3.9, 2.8, 2.9, 3.8, 3.4, 3.7]
>>> mathID = [0, 1, 5, 6, 3]
>>> mathGd = [4.0, 3.0, 3.5, 3.0, 4.0]
>>> major = ['y', 'n', 'y', 'n', 'n']
>>> studentInfo = pd.DataFrame({'ID': ID, 'Name': name, 'Sex': sex, 'Age': age,←↩

'Class': rank})
>>> otherInfo = pd.DataFrame({'ID': ID, 'GPA': GPA, 'Financial_Aid': aid})
>>> mathInfo = pd.DataFrame({'ID': mathID, 'Grade': mathGd, 'Math_Major': major←↩

})

Before querying our data, it is important to know some of its basic properties, such as number
of columns, number of rows, and the datatypes of the columns. This can be done by simply calling
the info() method on the desired DataFrame:

>>> mathInfo.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5 entries, 0 to 4
Data columns (total 3 columns):
Grade 5 non-null float64
ID 5 non-null int64
Math_Major 5 non-null object
dtypes: float64(1), int64(1), object(1)

We can also get some basic information about the structure of the DataFrame using the head()
or tail() methods.

>>> mathInfo.head()
Grade ID Math_Major ID Age GPA

0 4.0 0 y 0 20 3.8
1 3.0 1 n 2 18 3.0
2 3.5 5 y 4 19 2.8
3 3.0 6 n 6 20 3.8
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4 4.0 3 n 7 19 3.4

The method isin() is a useful way to find certain values in a DataFrame. It compares the
input (a list, dictionary, or Series) to the DataFrame and returns a boolean Series showing whether
or not the values match. You can then use this boolean array to select appropriate locations. Now
let’s look at the pandas equivalent of some SQL SELECT statements.

>>> # SELECT ID, Age FROM studentInfo
>>> studentInfo[['ID', 'Age']]

>>> # SELECT ID, GPA FROM otherInfo WHERE Financial_Aid = 'y'
>>> otherInfo[otherInfo['Financial_Aid']=='y'][['ID', 'GPA']]

>>> # SELECT Name FROM studentInfo WHERE Class = 'J' OR Class = 'Sp'
>>> studentInfo[studentInfo['Class'].isin(['J','Sp'])]['Name']

Problem 3. The example above shows how to implement a simple WHERE condition, and it
is easy to have a more complex expression. Simply enclose each condition by parentheses, and
use the standard boolean operators & (AND), | (OR), and ~ (NOT) to connect the conditions
appropriately. Use pandas to execute the following query:

SELECT ID, Name from studentInfo WHERE Age > 19 AND Sex = 'M'

Next, let’s look at JOIN statements. In pandas, this is done with the merge function, which
takes as arguments the two DataFrame objects to join, as well as keyword arguments specifying the
column on which to join, along with the type (left, right, inner, outer).

>>> # SELECT * FROM studentInfo INNER JOIN mathInfo ON studentInfo.ID = ←↩
mathInfo.ID

>>> pd.merge(studentInfo, mathInfo, on='ID') # INNER JOIN is the default
Age Class ID Name Sex Grade Math_Major

0 20 Sp 0 Mylan M 4.0 y
1 21 Se 1 Regan F 3.0 n
2 22 Se 3 Jess F 4.0 n
3 20 J 5 Remi F 3.5 y
4 20 J 6 Matt M 3.0 n
[5 rows x 7 columns]

>>> # SELECT GPA, Grade FROM otherInfo FULL OUTER JOIN mathInfo ON otherInfo.ID←↩
= mathInfo.ID

>>> pd.merge(otherInfo, mathInfo, on='ID', how='outer')[['GPA', 'Grade']]
GPA Grade

0 3.8 4.0
1 3.5 3.0
2 3.0 NaN
3 3.9 4.0
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4 2.8 NaN
5 2.9 3.5
6 3.8 3.0
7 3.4 NaN
8 3.7 NaN
[9 rows x 2 columns]

Problem 4. Using a join operation, create a DataFrame containing the ID, age, and GPA of
all male individuals. You ought to be able to accomplish this in one line of code.

Be aware that other types of SQL-like operations are also possible, such as UNION. When
you find yourself unsure of how to carry out a more involved SQL-like operation, the online pandas
documentation will be of great service.

Analyzing Data
Although pandas does not provide built-in support for heavy-duty statistical analysis of data, there
are nevertheless many features and functions that facilitate basic data manipulation and computation,
even when the data is in a somewhat messy state. We will now explore some of these features.

Basic Data Manipulation
Because the primary pandas data structures are subclasses of the ndarray, they are valid input
to most NumPy functions, and can often be treated simply as NumPy arrays. For example, basic
vectorized operations work just fine:

>>> x = pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd'])
>>> y = pd.Series(np.random.randn(5), index=['a', 'b', 'd', 'e', 'f'])
>>> x**2
a 1.710289
b 0.157482
c 0.540136
d 0.202580
dtype: float64
>>> z = x + y
>>> z
a 0.123877
b 0.278435
c NaN
d -1.318713
e NaN
f NaN
dtype: float64
>>> np.log(z)
a -2.088469
b -1.278570
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c NaN
d NaN
e NaN
f NaN
dtype: float64

Notice that pandas automatically aligns the indexes when adding two Series (or DataFrames), so
that the the index of the output is simply the union of the indexes of the two inputs. The default
missing value NaN is given for labels that are not shared by both inputs.

It may also be useful to transpose DataFrames, re-order the columns or rows, or sort according
to a given column. Here we demonstrate these capabilities:

>>> df = pd.DataFrame(np.random.randn(4,2), index=['a', 'b', 'c', 'd'], columns←↩
=['I', 'II'])

>>> df
I II

a -0.154878 -1.097156
b -0.948226 0.585780
c 0.433197 -0.493048
d -0.168612 0.999194

[4 rows x 2 columns]

>>> df.transpose()
a b c d

I -0.154878 -0.948226 0.433197 -0.168612
II -1.097156 0.585780 -0.493048 0.999194

[2 rows x 4 columns]

>>> # switch order of columns, keep only rows 'a' and 'c'
>>> df.reindex(index=['a', 'c'], columns=['II', 'I'])

II I
a -1.097156 -0.154878
c -0.493048 0.433197

[2 rows x 2 columns]

>>> # sort descending according to column 'II'
>>> df.sort_values('II', ascending=False)

I II
d -0.168612 0.999194
b -0.948226 0.585780
c 0.433197 -0.493048
a -0.154878 -1.097156

[4 rows x 2 columns]



12 Lab 7. Pandas I: Introduction

Dealing with Missing Data

Missing data is a ubiquitous problem in data science. Fortunately, pandas is particularly well-suited
to handling missing and anomalous data. As we have already seen, the pandas default for a missing
value is NaN. In basic arithmetic operations, if one of the operands is NaN, then the output is also
NaN. The following example illustrates this concept:

>>> x = pd.Series(np.arange(5))
>>> y = pd.Series(np.random.randn(5))
>>> x.iloc[3] = np.nan
>>> x + y
0 0.731521
1 0.623651
2 2.396344
3 NaN
4 3.351182
dtype: float64

If we are not interested in the missing values, we can simply drop them from the data altogether:

>>> (x + y).dropna()
0 0.731521
1 0.623651
2 2.396344
4 3.351182
dtype: float64

This is not always the desired behavior, however. It may well be the case that missing data
actually corresponds to some default value, such as zero. In this case, we can replace all instances of
NaN with a specified value:

>>> # fill missing data with 0, add
>>> x.fillna(0) + y
0 0.731521
1 0.623651
2 2.396344
3 1.829400
4 3.351182
dtype: float64

Other functions, such as sum() and mean() ignore NaN values in the computation. When
dealing with missing data, make sure you are aware of the behavior of the pandas functions you are
using.

Data I/O
Being able to import and export data is a fundamental skill in data science. Unfortunately, with the
multitude of data formats and conventions, importing data can often be a painful task. The pandas
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library seeks to reduce some of the difficulty by providing file readers for various types of formats,
including CSV, Excel, HDF5, SQL, JSON, HTML, and pickle files.

Method Description
describe() Return a Series describing the data structure

head() Return the first n rows, defaulting to 5
tail() Return the last n rows, defaulting to 5

to_csv() Write the index and entries to a CSV file
to_json() Convert the object to a JSON string

to_pickle() Serialize the object and store it in an external file
to_sql() Write the object data to an open SQL database

Table 7.3: Methods for viewing or exporting data in a pandas Series or DataFrame.

The CSV (comma separated values) format is a simple way of storing tabular data in plain
text. Because CSV files are one of the most popular file formats for exchanging data, we will explore
the read_csv() function in more detail. To learn to read other types of file formats, see the online
pandas documentation. To read a CSV data file into a DataFrame, call the read_csv() function
with the path to the CSV file, along with the appropriate keyword arguments. Below we list some
of the most important keyword arguments:

• delimiter: This argument specifies the character that separates data fields, often a comma or
a whitespace character.

• header: The row number (starting at 0) in the CSV file that contains the column names.

• index_col: If you want to use one of the columns in the CSV file as the index for the DataFrame,
set this argument to the desired column number.

• skiprows: If an integer n, skip the first n rows of the file, and then start reading in the data.
If a list of integers, skip the specified rows.

• names: If the CSV file does not contain the column names, or you wish to use other column
names, specify them in a list assigned to this argument.

There are several other keyword arguments, but this should be enough to get you started.
When you need to save your data, pandas allows you to write to several different file formats. A

typical example is the to_csv() function method attached to Series and DataFrame objects, which
writes the data to a CSV file. Keyword arguments allow you to specify the separator character, omit
writing the columns names or index, and specify many other options. The code below demonstrates
its typical usage:

>>> df.to_csv("my_df.csv")

Problem 5. The file crime_data.csv contains data on types of crimes committed in the
United States from 1960 to 2016.

• Load the data into a pandas DataFrame, using the column names in the file and the
column titled “Year” as the index. Make sure to skip lines that don’t contain data.
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• Insert a new column into the data frame that contains the crime rate by year (the ratio
of “Total” column to the “Population” column).

• Plot the crime rate as a function of the year.

• List the 5 years with the highest crime rate in descending order.

• Calculate the average number of total crimes as well as burglary crimes between 1960 and
2012.

• Find the years for which the total number of crimes was below average, but the number
of burglaries was above average.

• Plot the number of murders as a function of the population.

• Select the Population, Violent, and Robbery columns for all years in the 1980s, and save
this smaller data frame to a CSV file crime_subset.csv.

Problem 6. In 1912 the RMS Titanic sank after colliding with an iceberg. The file titanic.csv
contains data on the incident. Each row represents a different passenger, and the columns de-
scribe various features of the passengers (age, sex, whether or not they survived, etc.)

Start by cleaning the data.

• Read the data into a DataFrame. Use the first row of the file as the column labels, but
do not use any of the columns as the index.

• Drop the columns "Sibsp", "Parch", "Cabin", "Boat", "Body", and "home.dest".

• Drop any entries without data in the "Survived" column, then change the remaining
entries to True or False (they start as 1 or 0).

• Replace null entries in the "Age" column with the average age.

• Save the new DataFrame as titanic_clean.csv.

Next, answer the following questions.

• How many people survived? What percentage of passengers survived?

• What was the average price of a ticket? How much did the most expensive ticket cost?

• How old was the oldest survivor? How young was the youngest survivor? What about
non-survivors?
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Lab Objective: Clear, insightful visualizations are a crucial part of data analysis. To facilitate
quick data visualization, pandas includes several tools that wrap around matplotlib. These tools make
it easy to compare different parts of a data set and explore the data as a whole.

Overview of Plotting Tools
The main tool for visualization in pandas is the plot() method of the Series and DataFrame. The
method has a keyword argument kind that specifies the type of plot to draw. The valid options for
kind are detailed below.

Plot Type plot() ID Uses and Advantages
Line plot "line" Show trends ordered in data; easy to compare multiple data sets

Scatter plot "scatter" Compare exactly two data sets, independent of ordering
Bar plot "bar", "barh" Compare categorical or sequential data

Histogram "hist" Show frequencies of one set of values, independent of ordering
Box plot "box" Display min, median, max, and quartiles; compare data distributions

Hexbin plot "hexbin" 2D histogram; reveal density of cluttered scatter plots

Table 8.1: Uses for the plot() method of the pandas Series and DataFrame. The plot ID is the
value of the keyword argument kind. That is, df.plot(kind="scatter") creates a scatter plot.
The default kind is "line".

The plot() method calls plt.plot(), plt.hist(), plt.scatter(), or another matplotlib
plotting function, but it also assigns axis labels, tick marks, legends, and a few other things based
on the index and the data. Most calls to plot() specify the kind of plot and which Series to use
as the x and y axes. By default, the index of the Series or DataFrame is used for the x axis.

>>> import pandas as pd
>>> from matplotlib import pyplot as plt

>>> crime = pd.read_csv("crime_data.csv", index_col="Year")
>>> crime.plot(y="Population") # Plot population against the index (years).

1
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1960 1970 1980 1990 2000 2010
Year

1.8
2.0
2.2
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2.6
2.8
3.0
3.2

1e8
Population

In this case, the call to the plot() method is essentially equivalent to the following code.

>>> plt.plot(crime.index, crime["Population"], label="Population")
>>> plt.xlabel(crime.index.name)
>>> plt.xlim(min(crime.index), max(crime.index))
>>> plt.legend(loc="best")

The plot() method also takes in many keyword arguments for matplotlib plotting and an-
notation functions. For example, setting legend=False disables the legend, providing a value for
title sets the figure title, grid=True turns a grid on, and so on. For more customizations, see
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html.

Visualizing an Entire Data Set

A good way to start analyzing an unfamiliar data set is to visualize as much of the data as possible
to determine which parts are most important or interesting. For example, since the columns in a
DataFrame share the same index, the columns can all be graphed together using the index as the
x-axis. In fact, the plot() method attempts by default to plot every Series (column) in the
DataFrame. This is especially useful with sequential data, like the crime data set.

The crime data set has 11 columns, so the resulting figure, Figure 8.1a, is fairly cluttered.
However, it does shows that the "Population" column is on a completely different scale than the
others. Dropping a few columns gives a better overview of the data, shown in Figure 8.1b.

# Plot all columns together against the index.
>>> crime.plot(linewidth=1)

# Plot all columns together except for 'Population' and 'Total'.
>>> crime.drop(["Population", "Total"], axis=1).plot(linewidth=1)

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html
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(a) All columns of the crime data set on the same
figure, using the index as the x-axis.
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(b) All columns of the crime data set except
"Population" and "Total".

Figure 8.1

Achtung!

The "Population" column differs from the other columns because it is has different units of
measure: population is measured by “number of people,” but all other columns are measured
in “number of crimes.” Be careful not to plot parts of a data set together if those parts don’t
have the same units or are otherwise incomparable.

To quickly plot several columns in separate subplots, use subplots=True and specify a shape
tuple as the layout for the plots. Subplots automatically share the same x-axis; set sharey=True
to force them to share the same y-axis as well.

>>> crime.plot(y=["Property", "Larceny", "Burglary", "Violent"],
... subplots=True, layout=(2,2), sharey=True,
... style=['-', '--', '-.', ':'])
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The plot() method can generate subplots of any kind of plot. However, since subplots share
an x-axis by default, histograms turn out poorly whenever there are columns with very different data
ranges. For histograms, use the hist() method of the DataFrame instead of the plot() method.
Specify the number of bins with the bins parameter.

>>> crime[["Violent","Murder","Robbery","Property"]].hist(grid=False, bins=20)
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Finally, the function pd.plotting.scatter_matrix() produces a table of plots where each
column is plotted against each other column in separate scatter plots. The plots on the diagonal,
instead of plotting a column against itself, displays a histogram of that column. This provides a way
to very quickly do an initial analysis of the correlation between different columns.

>>> pd.plotting.scatter_matrix(crime[["Population", "Total", "Violent"]])
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Patterns and Correlations
After visualizing the entire data set initially, the next step is usually to closely compare related parts
of the data. For example, Figure 8.1b suggests that the "Murder" and "Forcible Rape" columns
are roughly on the same scale. Since this data is sequential (indexed by time), start by plotting
these two columns against the index. Next, create a scatter plot of one of the columns versus the
other to investigate correlations that are independent of the index. Unlike other types of plots, using
kind="scatter" requires both an x and a y column as arguments.

# Plot 'Murder' and 'Forcible Rape' as lines against the index.
>>> crime.plot(y=["Murder", "Forcible Rape"])

# Make a scatter plot of 'Murder' against 'Forcible Rape', ignoring the index.
>>> crime.plot(kind="scatter", x="Murder", y="Forcible Rape", alpha=.8, rot=30)
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What does these graphs show about the data? First of all, rape is more common than murder.
Second, rates of rape appear to be steadily increased from the mid 1960’s to the mid 1990’s before
leveling out, while murder rates stay relatively constant. The disparity between rape and murder is
confirmed in the scatter plot: the clump of data points at about 15,000 murders and 90,000 rapes
shows that there have been many years where rape was relatively high while murder was somewhat
low.

Achtung!

While analyzing data, especially while searching for patterns and correlations, always ask
yourself if the data makes sense and is trustworthy. What lurking variables could have influenced
the data measurements as they were being gathered?

The crime data set is somewhat suspect in this regard. The murder rate is likely accurate,
since murder is conspicuous and highly reported, but what about the rape rate? Are the number
of rapes increasing, or is the percentage of rapes being reported increasing? (It’s probably both!)
Be careful about drawing conclusions for sensitive or questionable data.

Figure 8.1b also reveals some general patterns relative to time. For instance, there seems to be
a small bump in each type of crime in the early 1980’s. Slicing the entries from 1980 to 1985 provides
a closer look. Since there are only a few entries, we can treat the data as categorical and make a bar
chart.
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# Plot 'Property' and 'Larceny' rates from 1980 to 1985.
>>> crime.loc[1980:1985, ["Property", "Larceny", "Burglary"]].plot(kind="barh",
... title="Crime rates from 1980 to 1985")

# Plot the most recent year's crime rates for comparison.
>>> crime.iloc[-1][["Property", "Larceny", "Burglary"]].plot(kind="barh",
... title="Crime rates in 2016", color=["C0", "C1", "C2"])
>>> plt.tight_layout()
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Note

As a general rule, horizontal bar charts (kind="hbar") are better than the default vertical bar
charts (kind="bar") because most humans can detect horizontal differences more easily than
vertical differences. If the labels are too long to fit on a normal figure, use plt.tight_layout()
to adjust the plot boundaries to fit the labels in.

Distributional Visualizations
Histograms are good for examining the distribution of a single column in a data set. While pandas
is capable of plotting several histograms on the same plot, the results are usually hard to read.

# Plot three histograms together.
>>> crime.plot(kind="hist", y=["Violent", "Vehicle Theft", "Burglary"],
... bins=20, alpha=.7, rot=30)

# Plot three histograms, stacking one on top of the other.
>>> crime.plot(kind="hist", y=["Violent", "Vehicle Theft", "Burglary"],
... bins=20, stacked=True, rot=30)
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Instead of using histograms to compare distributions of data, use box plots. A box plot (some-
times called a “cat-and-whisker” plot) shows the five number summary: the minimum, first quartile,
median, third quartile, and maximum of the data. While not quite the same as a histogram, box
plots are much better suited to quickly compare relatable distributions.

# Compare the distributions of three columns.
>>> crime.plot(kind="box", y=["Violent", "Vehicle Theft", "Burglary"])

# Compare the distributions of all columns but 'Population' and 'Total'.
>>> crime.drop(["Population", "Total"], axis=1).plot(kind="box", vert=False)
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Hexbin Plots
A scatter plot is essentially a plot of samples from the joint distribution of two columns. However,
scatter plots can be uninformative for large data sets when the points in a scatter plot are closely
clustered. Hexbin plots solve this problem by plotting point density in hexagonal bins—essentially
creating a 2-dimensional histogram.

The file sat_act.csv contains 700 self reported scores on the SAT Verbal, SAT Quantitative
and ACT, collected as part of the Synthetic Aperture Personality Assessment (SAPA) web based
personality assessment project. The obvious question with this data set is “how correlated are ACT
and SAT scores?” The scatter plot of ACT scores versus SAT Quantitative scores, Figure 8.6a, is
highly cluttered, even though the points have some transparency. A hexbin plot of the same data,
Figure 8.6b, reveals the frequency of points in binned regions.
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>>> satact = pd.read_csv("sat_act.csv", index_col="ID")
>>> list(satact.columns)
['gender', 'education', 'age', 'ACT', 'SATV', 'SATQ']

# Plot the ACT scores against the SAT Quant scores in a regular scatter plot.
>>> satact.plot(kind="scatter", x="ACT", y="SATQ", alpha=.8)

# Plot the densities of the ACT vs. SATQ scores with a hexbin plot.
>>> satact.plot(kind="Hexbin", x="ACT", y="SATQ", gridsize=20)
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(b) Frequency of ACT vs. SAT Quant scores.

Figure 8.6

Just as choosing a good number of bins is important for a good histogram, choosing a good
gridsize is crucial for an informative hexbin plot. A large gridsize creates many small bins and a
small gridsize creates fewer, larger bins.

See http://pandas.pydata.org/pandas-docs/stable/visualization.html for more types
of plots available in Pandas and further examples.

Principles of Good Data Visualization
Visualization is much more than a set of pretty pictures scattered throughout a paper for the sole
purpose of providing contrast to the text. When properly implemented, data visualization is a
powerful tool for analysis and communication. When writing a paper or report, the author must
make many decisions about how to use graphics effectively to convey useful information to the reader.
Here we will go over a simple process for making deliberate, effective, and efficient design decisions.

Attention to Detail
Consider the plot in Figure 8.7. What does it depict? We can tell from a simple glance that it
is a scatter plot of positively correlated data of some kind, with temp–likely temperature–on the x

axis and cons on the y axis. However, the picture is not really communicating anything about the
dataset. We have not specified the units for the x or the y axis, we have no idea what cons is, there
is no title, and we don’t even know where the data came from in the first place.

http://pandas.pydata.org/pandas-docs/stable/visualization.html
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Figure 8.7: Non-specific data.

Labels and Citations

In a homework or lab setting, we sometimes (mistakenly) think that it is acceptable to leave off
appropriate labels, legends, titles, and sourcing. In a published report or presentation, this kind of
carelessness is confusing at best and, when the source is not included, even plagiaristic. Clearly, we
need to explain our data in a useful manner that includes all of the vital information.

Consider again Figure 8.7. This figure comes from the Icecream dataset within the pydataset
package, which we store here in a dataframe and then plot:

>>> from pydataset import data
>>> icecream = data("Icecream")
>>> icecream.plot(kind="scatter", x="temp", y="cons")

We have at this point reproduced the rather substandard plot in Figure 8.7. Using data('
Icecream', show_doc=True) we find the following information:

1. The dataset details ice cream consumption via four-weekly observations from March 1951 to
July 1953 in the United States.

2. cons corresponds to “consumption of ice cream per head” and is measured in pints.

3. temp corresponds to temperature, degrees Fahrenheit.

4. The listed source is: “Hildreth, C. and J. Lu (1960) Demand relations with autocorrelated
disturbances, Technical Bulletin No 2765, Michigan State University.”

We add these important details using the following code. As we have seen in previous examples,
pandas automatically generates legends when appropriate. However, although pandas also automat-
ically labels the x and y axes, our data frame column titles may be insufficient. Appropriate titles
for the x and y axes must also list appropriate units. For example, the y axis should specify that the
consumption is in units of pints per head, in place of the ambiguous label cons.
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>>> icecream = data("Icecream")
# Set title via the title keyword argument
>>> icecream.plot(kind="scatter", x="temp", y="cons", title="Ice Cream ←↩

Consumption in the U.S., 1951-1953",)
# Override pandas automatic labelling using xlabel and ylabel
>>> plt.xlabel("Temp (Farenheit)")
>>> plt.ylabel("Consumption per head (pints)")

To arbitrarily add the necessary text to the figure, use either plt.annotate() or plt.text().
Alternatively, add text immediately below wherever the figure is displayed.

>>> plt.text(20, .1, r"Source: Hildreth, C. and J. Lu (1960) \emph{Demand"
... "relations with autocorrelated disturbances}\nTechnical Bulletin No"
... "2765, Michigan State University.", fontsize=7)

Both of these methods are imperfect, however, and can normally be just as easily replaced by
a caption attached to the figure in your presentation or document setting. We again reiterate how
important it is that you source any data you use. Failing to do so is plagiarism.

Finally, we have a clear and demonstrative graphic in Figure 8.8.
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Ice Cream Consumption in the U.S., 1951--1953

Figure 8.8: Source: Hildreth, C. and J. Lu (1960) Demand relations with autocorrelated disturbances,
Technical Bulletin No 2765, Michigan State University.

Problem 1. The pydataset modulea contains numerous data sets, each stored as a pandas
DataFrame.

>>> from pydataset import data

# Call data() to see the entire list of data sets.
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# To load a particular data set, enter its ID as an argument to data().
>>> titanic = data("Titanic")
# To see the information about a data set, call data() with show_doc=True.
>>> data("Titanic", show_doc=True)
Titanic

PyDataset Documentation (adopted from R Documentation. The displayed ←↩
examples

are in R)

## Survival of passengers on the Titanic

Visualize and describe at least 5 of the following data sets with 2 or 3 figures each.
Comment on the implications and significance of each visualization and give a comprehensive
summary of the data set.

• "Arbuthnot": Ratios of male to female births in London from 1629-1710

• "trees": Girth, height and volume for black cherry trees

• "road": Road accident deaths in the United States

• "birthdeathrates": Birth and death rates by country

• "bfeed": Child breast feeding records

• "heart": Survival of patients on the waiting list for the Stanford heart transplant program

• "lung": Survival in patients with advanced lung cancer from the North Central Cancer
Treatment group

• "birthwt": Risk factors associated with low infant birth weight

• A data set of your choice

Include each of the following in each visualization.

• A clear title, with relevant information for the period or region the data was collected in.

• Axis labels that specify units.

• A legend (if appropriate).

• The source. You may include the source information in your plot or print it after the plot.
aRun pip install pydataset if needed.
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Lab Objective: Many data sets contain categorical values that naturally sort the data into groups.
Analyzing and comparing such groups is an important part of data analysis. In this lab we explore
pandas tools for grouping data and presenting tabular data more compactly, primarily through grouby
and pivot tables.

Groupby
The file mammal_sleep.csv1 contains data on the sleep cycles of different mammals, classified by
order, genus, species, and diet (carnivore, herbivore, omnivore, or insectivore). The "sleep_total"
column gives the total number of hours that each animal sleeps (on average) every 24 hours. To get
an idea of how many animals sleep for how long, we start off with a histogram of the "sleep_total"
column.

>>> import pandas as pd
>>> from matplotlib import pyplot as plt

# Read in the data and print a few random entries.
>>> msleep = pd.read_csv("mammal_sleep.csv")
>>> msleep.sample(5)

name genus vore order sleep_total sleep_rem sleep_cycle
51 Jaguar Panthera carni Carnivora 10.4 NaN NaN
77 Tenrec Tenrec omni Afrosoricida 15.6 2.3 NaN
10 Goat Capri herbi Artiodactyla 5.3 0.6 NaN
80 Genet Genetta carni Carnivora 6.3 1.3 NaN
33 Human Homo omni Primates 8.0 1.9 1.5

# Plot the distribution of the sleep_total variable.
>>> msleep.plot(kind="hist", y="sleep_total", title="Mammalian Sleep Data")
>>> plt.xlabel("Hours")

1Proceedings of the National Academy of Sciences, 104 (3):1051–1056, 2007. Updates from V. M. Savage and G. B.
West, with additional variables supplemented by Wikipedia. Available in pydataset (with a few more columns) under
the key "msleep".

1
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Figure 9.1: "sleep_total" frequencies from the mammalian sleep data set.

While this visualization is a good start, it doesn’t provide any information about how different
kinds of animals have different sleeping habits. How long do carnivores sleep compared to herbivores?
Do mammals of the same genus have similar sleep patterns?

A powerful tool for answering these kinds of questions is the groupby() method of the pandas
DataFrame class, which partitions the original DataFrame into groups based on the values in one
or more columns. The groupby() method does not return a new DataFrame; it returns a pandas
GroupBy object, an interface for analyzing the original DataFrame by groups.

For example, the columns "genus", "vore", and "order" in the mammal sleep data all have a
discrete number of categorical values that could be used to group the data. Since the "vore" column
has only a few unique values, we start by grouping the animals by diet.

# List all of the unique values in the 'vore' column.
>>> set(msleep["vore"])
{nan, 'herbi', 'omni', 'carni', 'insecti'}

# Group the data by the 'vore' column.
>>> vores = msleep.groupby("vore")
>>> list(vores.groups)
['carni', 'herbi', 'insecti', 'omni'] # NaN values for vore were dropped.

# Get a single group and sample a few rows. Note vore='carni' in each entry.
>>> vores.get_group("carni").sample(5)

name genus vore order sleep_total sleep_rem sleep_cycle
80 Genet Genetta carni Carnivora 6.3 1.3 NaN
50 Tiger Panthera carni Carnivora 15.8 NaN NaN
8 Dog Canis carni Carnivora 10.1 2.9 0.333
0 Cheetah Acinonyx carni Carnivora 12.1 NaN NaN
82 Red fox Vulpes carni Carnivora 9.8 2.4 0.350
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For starters, groupby() is useful for filtering a DataFrame by column values: the command
df.groupby(col).get_group(value) returns the rows of df where the entry of the col column is
value. The real advantage of groupby(), however, is how easy it makes it to compare groups of
data. Standard DataFrame methods like describe(), mean(), std(), min(), and max() all work on
GroupBy objects to produce a new data frame that describes the statistics of each group.

# Get averages of the numerical columns for each group.
>>> vores.mean()

sleep_total sleep_rem sleep_cycle
vore
carni 10.379 2.290 0.373
herbi 9.509 1.367 0.418
insecti 14.940 3.525 0.161
omni 10.925 1.956 0.592

# Get more detailed statistics for 'sleep_total' by group.
>>> vores["sleep_total"].describe()

count mean std min 25% 50% 75% max
vore
carni 19.0 10.379 4.669 2.7 6.25 10.4 13.000 19.4
herbi 32.0 9.509 4.879 1.9 4.30 10.3 14.225 16.6
insecti 5.0 14.940 5.921 8.4 8.60 18.1 19.700 19.9
omni 20.0 10.925 2.949 8.0 9.10 9.9 10.925 18.0

Multiple columns can be used simultaneously for grouping. In this case, the get_group()
method of the GroupBy object requires a tuple specifying the values for each of the grouping columns.

>>> msleep_small = msleep.drop(["sleep_rem", "sleep_cycle"], axis=1)
>>> vores_orders = msleep_small.groupby(["vore", "order"])
>>> vores_orders.get_group(("carni", "Cetacea"))

name genus vore order sleep_total
30 Pilot whale Globicephalus carni Cetacea 2.7
59 Common porpoise Phocoena carni Cetacea 5.6
79 Bottle-nosed dolphin Tursiops carni Cetacea 5.2

Visualizing Groups
There are a few ways that groupby() or similar techniques can simplify the process of visualizing
groups of data. First of all, groupby() makes it easy to visualize one group at a time. The following
visualization improve on Figure 9.1 by grouping mammals by their diets.

# Plot histograms of 'sleep_total' for two separate groups.
>>> vores.get_group("carni").plot(kind="hist", y="sleep_total", legend="False",

title="Carnivore Sleep Data")
>>> plt.xlabel("Hours")
>>> vores.get_group("herbi").plot(kind="hist", y="sleep_total", legend="False",

title="Herbivore Sleep Data")
>>> plt.xlabel("Hours")
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Figure 9.2: "sleep_total" histograms for two groups in the mammalian sleep data set.

The statistical summaries from the GroupBy object’s mean(), std(), or describe() methods
also lend themselves well to certain visualizations for comparing groups.

>>> vores[["sleep_total", "sleep_rem", "sleep_cycle"]].mean().plot(kind="barh",
xerr=vores.std(), title=r"Mammallian Sleep, $\mu\pm\sigma$")

>>> plt.xlabel("Hours")
>>> plt.ylabel("Mammal Diet Classification (vore)")
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Box plots are well suited for comparing similar distributions. The boxplot() method of the
GroupBy class creates one subplot per group, plotting each of the columns as a box plot.

# Use GroupBy.boxplot() to generate one box plot per group.
>>> vores.boxplot(grid=False)
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Alternatively, the boxplot() method of the DataFrame class creates one subplot per column,
plotting each of the columns as a box plot. Specify the by keyword to group the data appropriately.

# Use DataFrame.boxplot() to generate one box plot per column.
>>> msleep.boxplot(["sleep_total", "sleep_rem"], by="vore", grid=False)
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Like groupby(), the by argument can be a single column label or a list of column labels. Similar
methods exist for creating histograms (GroupBy.hist() and DataFrame.hist() with by keyword),
but generally box plots are better for comparing multiple distributions.
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Problem 1. Examine the following data sets from pydataset and answer the corresponding
questions. Use visualizations to support your conclusions.

• "iris", measurements of various species of iris flowers.

1. Which species is easiest to distinguish from the others? How?

2. Given iris data without a species label, what strategies could you use to identify the
flower’s species?

• "poisons", experimental results of three different poisons and four different treatments.

1. In general, which poison is most deadly? Which treatment is most effective?

2. If you were poisoned, how would you choose the treatment if you did not know which
poison it was? What if you did know which poison it was?
(Hint: group the data by poison, then group each subset by treatment.)

• "diamonds", prices and characteristics of almost 54,000 round-cut diamonds.

1. How does the color and cut of a diamond affect its price?

2. Of the diamonds with color "H", those with a "Fair" cut sell, on average, for a
higher price than those with an "Ideal" (superior) cut. What other factors could
explain this unintuitive statistic?

Pivot Tables
One of the downfalls of groupby() is that a typical GroupBy object has too much information to
display coherently. A pivot table intelligently summarizes the results of a groupby() operation
by aggregating the data in a specified way. The standard tool for making a pivot table is the
pivot_table() method of the DataFrame class. As an example, consider the "HairEyeColor" data
set from pydataset.

>>> from pydataset import data
>>> hec = data("HairEyeColor") # Load and preview the data.
>>> hec.sample(5)

Hair Eye Sex Freq
3 Red Brown Male 10
1 Black Brown Male 32
14 Brown Green Male 15
31 Red Green Female 7
21 Black Blue Female 9

>>> for col in ["Hair", "Eye", "Sex"]: # Get unique values per column.
... print("{}: {}".format(col, ", ".join(set(str(x) for x in hec[col]))))
...
Hair: Brown, Black, Blond, Red
Eye: Brown, Blue, Hazel, Green
Sex: Male, Female
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There are several ways to group this data with groupby(). However, since there is only one
entry per unique hair-eye-sex combination, the data can be completely presented in a pivot table.

>>> hec.pivot_table(values="Freq", index=["Hair", "Eye"], columns="Sex")
Sex Female Male
Hair Eye
Black Blue 9 11

Brown 36 32
Green 2 3
Hazel 5 10

Blond Blue 64 30
Brown 4 3
Green 8 8
Hazel 5 5

Brown Blue 34 50
Brown 66 53
Green 14 15
Hazel 29 25

Red Blue 7 10
Brown 16 10
Green 7 7
Hazel 7 7

Listing the data in this way makes it easy to locate data and compare the female and male
groups. For example, it is easy to see that brown hair is more common than red hair and that about
twice as many females have blond hair and blue eyes than males.

Unlike "HairEyeColor", many data sets have more than one entry in the data for each grouping
(for example, if there were two or more rows in the original data for females with blond hair and blue
eyes). To construct a pivot table, data of similar groups must be aggregated together in some way.
By default entries are aggregated by averaging the non-null values. Other options include taking the
min, max, standard deviation, or just counting the number of occurrences.

As an example, consider again the Titanic data set found in titanic.csv2. For this analysis,
take only the "Survived", "Pclass", "Sex", "Age", "Fare", and "Embarked" columns, replace null
age values with the average age, then drop any rows that are missing data. To begin, we examine
the average survival rate grouped by sex and passenger class.

>>> titanic = pd.read_csv("titanic")
>>> titanic = titanic[["Survived", "Pclass", "Sex", "Age", "Fare", "Embarked"]]
>>> titanic["Age"].fillna(titanic["Age"].mean(), inplace=True)
>>> titanic.dropna(inplace=True)

>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass")
Pclass 1.0 2.0 3.0
Sex
female 0.965 0.887 0.491
male 0.341 0.146 0.152

2There is a "Titanic" data set in pydataset, but it does not contain as much information as the data in titanic.csv.
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Note

The pivot_table() method is just a convenient way of performing a potentially complicated
groupby() operation with aggregation and some reshaping. For example, the following code is
equivalent to the previous example.

>>> titanic.groupby(["Sex", "Pclass"])["Survived"].mean().unstack()
Pclass 1.0 2.0 3.0
Sex
female 0.965 0.887 0.491
male 0.341 0.146 0.152

The stack(), unstack(), and pivot() methods provide more advanced shaping options.

Among other things, this pivot table clearly shows how much more likely females were to survive
than males. To see how many entries fall into each category, or how many survived in each category,
aggregate by counting or summing instead of taking the mean.

# See how many entries are in each category.
>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass",
... aggfunc="count")
Pclass 1.0 2.0 3.0
Sex
female 144 106 216
male 179 171 493

# See how many people from each category survived.
>>> titanic.pivot_table(values="Survived", index="Sex", columns="Pclass",
... aggfunc="sum")
Pclass 1.0 2.0 3.0
Sex
female 137.0 94.0 106.0
male 61.0 25.0 75.0

Discretizing Continuous Data
So far we have examined survival rates based on sex and passenger class. Another factor that could
have played into survival is age. Were male children as likely to die as females in general? We can
investigate this question by multi-indexing, or pivoting on more than just two variables, by adding
in another index.

In the original dataset, the "Age" column has a floating point value for the age of each passenger.
If we just added "Age" as another pivot, then the table would create a new row for each age present.
Instead, we partition the "Age" column into intervals with pd.cut(), thus creating a categorical that
can be used for grouping.
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# pd.cut() maps continuous entries to discrete intervals.
>>> pd.cut([6, 1, 2, 3, 4, 5, 6, 7], [0, 4, 8])
[(0, 4], (0, 4], (0, 4], (0, 4], (4, 8], (4, 8], (4, 8], (0, 4]]
Categories (2, interval[int64]): [(0, 4] < (4, 8]]

# Partition the passengers into 3 categories based on age.
>>> age = pd.cut(titanic['Age'], [0, 12, 18, 80])

>>> titanic.pivot_table(values="Survived", index=["Sex", age],
columns="Pclass", aggfunc="mean")

Pclass 1.0 2.0 3.0
Sex Age
female (0, 12] 0.000 1.000 0.467

(12, 18] 1.000 0.875 0.607
(18, 80] 0.969 0.871 0.475

male (0, 12] 1.000 1.000 0.343
(12, 18] 0.500 0.000 0.081
(18, 80] 0.322 0.093 0.143

From this table, it appears that male children (ages 0 to 12) in the 1st and 2nd class were very
likely to survive, whereas those in 3rd class were much less likely to. This clarifies the claim that
males were less likely to survive than females. However, there are a few oddities in this table: zero
percent of the female children in 1st class survived, and zero percent of teenage males in second class
survived. To further investigate, count the number of entries in each group.

>>> titanic.pivot_table(values="Survived", index=["Sex", age],
columns="Pclass", aggfunc="count")

Pclass 1.0 2.0 3.0
Sex Age
female (0, 12] 1 13 30

(12, 18] 12 8 28
(18, 80] 129 85 158

male (0, 12] 4 11 35
(12, 18] 4 10 37
(18, 80] 171 150 420

This table shows that there was only 1 female child in first class and only 10 male teenagers in
second class, which sheds light on the previous table.

Achtung!

The previous pivot table brings up an important point about partitioning datasets. The Titanic
dataset includes data for about 1300 passengers, which is a somewhat reasonable sample size,
but half of the groupings include less than 30 entries, which is not a healthy sample size for
statistical analysis. Always carefully question the numbers from pivot tables before making any
conclusions.
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Pandas also supports multi-indexing on the columns. As an example, consider the price of a
passenger tickets. This is another continuous feature that can be discretized with pd.cut(). Instead,
we use pd.qcut() to split the prices into 2 equal quantiles. Some of the resulting groups are empty;
to improve readability, specify fill_value as the empty string or a dash.

# pd.qcut() partitions entries into equally populated intervals.
>>> pd.qcut([1, 2, 5, 6, 8, 3], 2)
[(0.999, 4.0], (0.999, 4.0], (4.0, 8.0], (4.0, 8.0], (4.0, 8.0], (0.999, 4.0]]
Categories (2, interval[float64]): [(0.999, 4.0] < (4.0, 8.0]]

# Cut the ticket price into two intervals (cheap vs expensive).
>>> fare = pd.qcut(titanic["Fare"], 2)
>>> titanic.pivot_table(values="Survived",

index=["Sex", age], columns=[fare, "Pclass"],
aggfunc="count", fill_value='-')

Fare (-0.001, 14.454] (14.454, 512.329]
Pclass 1.0 2.0 3.0 1.0 2.0 3.0
Sex Age
female (0, 12] - - 7 1 13 23

(12, 18] - 4 23 12 4 5
(18, 80] - 31 101 129 54 57

male (0, 12] - - 8 4 11 27
(12, 18] - 5 26 4 5 11
(18, 80] 8 94 350 163 56 70

Not surprisingly, most of the cheap tickets went to passengers in 3rd class.

Problem 2. Suppose that someone claims that the city from which a passenger embarked had
a strong influence on the passenger’s survival rate. Investigate this claim.

1. Check the survival rates of the passengers based on where they embarked from (given in
the "Embarked" column).

2. Create a pivot table to examine survival rates based on both place of embarkment and
gender.

3. What do these tables suggest to you about the significance of where people embarked in
influencing their survival rate? Examine the context of the problem, and explain what
you think this really means.

4. Investigate the claim further with at least two more pivot tables, exploring other criteria
(e.g., class, age, etc.). Carefully explain your conclusions.
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Problem 3. Examine the following data sets from pydataset and answer the corresponding
questions. Use visualizations and/or pivot tables as appropriate to support your conclusions.

• "npk", an experiment on the effects of nitrogen (N), phosphate (P), and potassium (K)
on the growth of peas.

1. Which element is most effective in general for simulating growth? Which is the least
effective?

2. What combination of N, P, and K is optimal? What combination is the worst?

• "swiss", standardized fertility measures and socio-economic indicators for French-speaking
provinces of Switzerland at about 1888.

1. What is the relationship in the data between fertility rates and infant mortality?

2. How are provinces that are predominantly Catholic different from non-Catholic
provinces, if at all?

3. What factors in the data are the most important for predicting fertility?

• Examine a data set of your choice. Formulate simple questions about the data and
hypothesize the answers to those questions. Demonstrate the correctness of incorrectness
of each hypothesis. Explain your conclusions.
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Lab Objective: Many real world data sets—stock market measurements, ocean tide levels, website
traffic, seismograph data, audio signals, fluid simulations, quarterly dividends, and so on—are time
series, meaning they come with time-based labels. There is no universal format for such labels, and
indexing by time is often difficult with raw data. Fortunately, pandas has tools for cleaning and
analyzing time series. In this lab we use pandas to clean and manipulate time-stamped data and
introduce some basic tools for time series analysis.

Working with Dates and Times
The datetime module in the standard library provides a few tools for representing and operating
on dates and times. The datetime.datetime object represents a time stamp: a specific time of day
on a certain day. Its constructor accepts a four-digit year, a month (starting at 1 for January), a
day, and, optionally, an hour, minute, second, and microsecond. Each of these arguments must be
an integer, with the hour ranging from 0 to 23 (military time).

>>> from datetime import datetime

# Represent November 18th, 1991, at 2:01 PM.
>>> bday = datetime(1991, 11, 18, 14, 1)
>>> print(bday)
1991-11-18 14:01:00

# Find the number of days between 11/18/1991 and 11/9/2017.
>>> dt = datetime(2017, 11, 9) - bday
>>> dt.days
9487

The datetime.datetime object has a parser method, strptime(), that converts a string into
a new datetime.datetime object. The parser is flexible because the user must specify the format
that the dates are in. For example, if the dates are in the format "Month/Day//Year::Hour", specify
format="%m/%d//%Y::%H" to parse the string appropriately. See Table 10.1 for formatting options.

1
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Pattern Description
%Y 4-digit year
%y 2-digit year
%m 1- or 2-digit month
%d 1- or 2-digit day
%H Hour (24-hour)
%I Hour (12-hour)
%M 2-digit minute
%S 2-digit second

Table 10.1: Formats recognized by datetime.strptime()

>>> print(datetime.strptime("1991-11-18 / 14:01", "%Y-%m-%d / %H:%M"),
... datetime.strptime("1/22/1996", "%m/%d/%Y"),
... datetime.strptime("19-8, 1998", "%d-%m, %Y"), sep='\n')
1991-11-18 14:01:00 # The date formats are now standardized.
1996-01-22 00:00:00 # If no hour/minute/seconds data is given,
1998-08-19 00:00:00 # the default is midnight.

Converting Dates to an Index

The TimeStamp class is the pandas equivalent to a datetime.datetime object. An pandas index for
composed of TimeStamp objects is a DatetimeIndex, and a Series or DataFrame with such an index
is called a time series. The function pd.to_datetime() converts a collection of dates in a parsable
format to a DatetimeIndex. The format of the dates is inferred if possible, but it can be specified
explicitly with the same syntax as datetime.strptime().

>>> import pandas as pd

# Convert some dates (as strings) into a DatetimeIndex.
>>> dates = ["2010-1-1", "2010-2-1", "2012-1-1", "2012-1-2"]
>>> pd.to_datetime(dates)
DatetimeIndex(['2010-01-01', '2010-02-01', '2012-01-01', '2012-01-02'],

dtype='datetime64[ns]', freq=None)

# Create a time series, specifying the format for the dates.
>>> dates = ["1/1, 2010", "1/2, 2010", "1/1, 2012", "1/2, 2012"]
>>> date_index = pd.to_datetime(dates, format="%m/%d, %Y")
>>> pd.Series([x**2 for x in range(4)], index=date_index)
2010-01-01 0
2010-01-02 1
2012-01-01 4
2012-01-02 9
dtype: int64



3

Problem 1. The file DJIA.csv contains daily closing values of the Dow Jones Industrial Aver-
age from 2006–2016. Read the data into a Series or DataFrame with a DatetimeIndex as the
index. Drop rows with missing values, cast the "VALUES" column to floats, then plot the data.
(Hint: Use lw=.5 to make the line thin enough for the data.)

Generating Time-based Indices
Some time series datasets come without explicit labels, but still have instructions for deriving times-
tamps. For example, a list of bank account balances might have records from the beginning of every
month, or heart rate readings could be recorded by an app every 10 minutes. Use pd.date_range()
to generate a DatetimeIndex where the timestamps are equally spaced. The function is analogous
to np.arange() and has the following parameters.

Parameter Description
start Starting date

end End date
periods Number of dates to include

freq Amount of time between consecutive dates
normalize Whether or not to trim the time to midnight

Table 10.2: Parameters for pd.date_range().

Exactly two of the parameters start, end, and periods must be specified to generate a range
of dates. The freq parameter accepts a variety of string representations, referred to as offset aliases.
See Table 10.3 for a sampling of some of the options. For a complete list of the options, see http:
//pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases.

Parameter Description
"D" calendar daily (default)
"B" business daily
"H" hourly
"T" minutely
"S" secondly

"MS" first day of the month
"BMS" first weekday of the month

"W-MON" every Monday
"WOM-3FRI" every 3rd Friday of the month

Table 10.3: Options for the freq parameter to pd.date_range().

# 5 consecutive days staring with September 28, 2016.
>>> pd.date_range(start='9/28/2016 16:00', periods=5)
DatetimeIndex(['2016-09-28 16:00:00', '2016-09-29 16:00:00',

'2016-09-30 16:00:00', '2016-10-01 16:00:00',
'2016-10-02 16:00:00'],

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases


4 Lab 10. Pandas IV: Time Series

dtype='datetime64[ns]', freq='D')

# The first weekday of every other month in 2016.
>>> pd.date_range(start='1/1/2016', end='1/1/2017', freq="2BMS" )
DatetimeIndex(['2016-01-01', '2016-03-01', '2016-05-02', '2016-07-01',

'2016-09-01', '2016-11-01'],
dtype='datetime64[ns]', freq='2BMS')

# 10 minute intervals between 4:00 PM and 4:30 PM on September 9, 2016.
>>> pd.date_range(start='9/28/2016 16:00',

end='9/28/2016 16:30', freq="10T")
DatetimeIndex(['2016-09-28 16:00:00', '2016-09-28 16:10:00',

'2016-09-28 16:20:00', '2016-09-28 16:30:00'],
dtype='datetime64[ns]', freq='10T')

The freq parameter also supports more flexible string representations.

>>> pd.date_range(start='9/28/2016 16:30', periods=5, freq="2h30min")
DatetimeIndex(['2016-09-28 16:30:00', '2016-09-28 19:00:00',

'2016-09-28 21:30:00', '2016-09-29 00:00:00',
'2016-09-29 02:30:00'],

dtype='datetime64[ns]', freq='150T')

Problem 2. The file paychecks.csv contains values of an hourly employee’s last 93 paychecks.
He started working March 13, 2008. This company hands out paychecks on the first and third
Fridays of the month.

Read in the data, using pd.date_range() to generate the DatetimeIndex. Plot the data.
(Hint: use the union() method of DatetimeIndex class.)

Periods
The pandas Timestamp object represents a precise moment in time on a given day. Some data,
however, is recorded over a time interval, and it wouldn’t make sense to place an exact timestamp on
any of the measurements. For example, a record of the number of steps walked in a day, box office
earnings per week, quarterly earnings, and so on. This kind of data is better represented with the
pandas Period object and the corresponding PeriodIndex.

The constructor of the Period accepts a value and a freq. The value parameter indicates the
label for a given Period. This label is tied to the end of the defined Period. The freq indicates the
length of the Period and also (in some cases) indicates the offset of the Period. The freq parameter
accepts the majority, but not all, of frequencies listed in Table 10.3.

# The default value for 'freq' is "M" for months.
>>> p1 = pd.Period("2016-10")
>>> p1.start_time # The start and end times of the period
Timestamp('2016-10-01 00:00:00') # are recorded as Timestamps.
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>>> p1.end_time
Timestamp('2016-10-31 23:59:59.999999999')

# Represent the annual period ending in December that includes 10/03/2016.
>>> p2 = pd.Period("2016-10-03", freq="A-DEC")
>>> p2.start_time
Timestamp('2007-01-01 00:00:00')
>>> p2.end_time
Timestamp('2007-12-31 23:59:59.999999999')

# Get the weekly period ending on a Saturday that includes 10/03/2016.
>>> print(pd.Period("2016-10-03", freq="W-SAT"))
2016-10-02/2016-10-08

Like the pd.date_range() method, the pd.period_range() method is useful for generating a
PeriodIndex for unindexed data. The syntax is essentially identical to that of pd.date_range().
When using pd.period_range(), remember that the freq parameter marks the end of the period.

# Represent quarters from 2008 to 2010, with Q4 ending in December.
>>> pd.period_range(start="2008", end="2010-12", freq="Q-DEC")
PeriodIndex(['2008Q1', '2008Q2', '2008Q3', '2008Q4', '2009Q1', '2009Q2',

'2009Q3', '2009Q4', '2010Q1', '2010Q2', '2010Q3', '2010Q4'],
dtype='period[Q-DEC]', freq='Q-DEC')

After creating a PeriodIndex, the freq parameter can be changed via the asfreq() method.

# Get every three months form March 2010 to the start of 2011.
>>> p = pd.period_range("2010-03", "2011", freq="3M")
>>> p
PeriodIndex(['2010-03', '2010-06', '2010-09', '2010-12'],

dtype='period[3M]', freq='3M')

# Change frequency to be quarterly.
>>> p.asfreq("Q-DEC")
PeriodIndex(['2010Q2', '2010Q3', '2010Q4', '2011Q1'],

dtype='period[Q-DEC]', freq='Q-DEC')

Say you have created a PeriodIndex, but the bounds are not exactly where you expected they
would be. You can actually shift PeriodIndex obejcts by adding or subtracting an integer, n. The
resulting PeriodIndex will be shifted by n × freq.

# Shift index by 1
>>> p -= 1
>>> p
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

If for any reason you need to switch from periods to timestamps, pandas provides a very simple
method to do so.
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# Convert to timestamp (last day of each quarter)
>>> p = p.to_timestamp(how='end')
>>> p
DatetimeIndex(['2010-03-31', '2010-06-30', '2010-09-30', '2010-12-31'],

dtype='datetime64[ns]', freq='Q-DEC')

Similarly, you can switch from timestamps to periods.

>>> p.to_period("Q-DEC")
PeriodIndex(['2010Q1', '2010Q2', '2010Q3', '2010Q4'],

dtype='int64', freq='Q-DEC')

Problem 3. The file finances.csv contains a list of simulated quarterly earnings and expense
totals from a fictional company. Load the data into a Series or DataFrame with a PeriodIndex
with a quarterly frequency. Assume the fiscal year starts at the beginning of September and
that the data begins in September 1978. Plot the data.

Operations on Time Series
There are certain operations only available to Series and DataFrames that have a DatetimeIndex.
A sampling of this functionality is described throughout the remainder of this lab.

Slicing
Slicing is much more flexible in pandas for time series. We can slice by year, by month, or even use
traditional slicing syntax to select a range of dates.

# Select all rows in a given year
>>> df["2010"]

0 1
2010-01-01 0.566694 1.093125
2010-02-01 -0.219856 0.852917
2010-03-01 1.511347 -1.324036

# Select all rows in a given month of a given year
>>> df["2012-01"]

0 1
2012-01-01 0.212141 0.859555
2012-01-02 1.483123 -0.520873
2012-01-03 1.436843 0.596143

# Select a range of dates using traditional slicing syntax
>>> df["2010-1-2":"2011-12-31"]

0 1
2010-02-01 -0.219856 0.852917
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2010-03-01 1.511347 -1.324036
2011-01-01 0.300766 0.934895

Resampling
Imagine you have a dataset that does not have datapoints at a fixed frequency. For example, a dataset
of website traffic would take on this form. Because the datapoints occur at irregular intervals, it may
be more difficult to procure any meaningful insight. In situations like these, resampling your data is
worth considering.

The two main forms of resampling are downsampling (aggregating data into fewer intervals)
and upsampling (adding more intervals).

To downsample, use the resample() method of the Series or DataFrame. This method is sim-
ilar to groupby() in that it groups different entries o together, and requires some kind of aggregation
to produce a new data set. The first parameter to resample() is an offset string from Table 10.3:
"D" for daily, "H" for hourly, and so on.

>>> import numpy as np

# Get random data for every day from 2000 to 2010.
>>> dates = pd.date_range(start="2000-1-1", end='2009-12-31', freq='D')
>>> df = pd.Series(np.random.random(len(days)), index=dates)
>>> df
2000-01-01 0.559
2000-01-02 0.874
2000-01-03 0.774

...
2009-12-29 0.837
2009-12-30 0.472
2009-12-31 0.211
Freq: D, Length: 3653, dtype: float64

# Group the data by year.
>>> years = df.resample("A") # 'A' for 'annual'.
>>> years.agg(len) # Number of entries per year.
2000-12-31 366.0
2001-12-31 365.0
2002-12-31 365.0

...
2007-12-31 365.0
2008-12-31 366.0
2009-12-31 365.0
Freq: A-DEC, dtype: float64

>>> years.mean() # Average entry by year.
2000-12-31 0.491
2001-12-31 0.514
2002-12-31 0.484

...
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2007-12-31 0.508
2008-12-31 0.521
2009-12-31 0.523
Freq: A-DEC, dtype: float64

# Group the data by month.
>>> months = df.resample("M")
>>> len(months.mean()) # 12 months x 10 years = 120 months.
120

Problem 4. The file website_traffic.csv contains records for different visits to a fictitious
website. Read in the data, calculate the duration of each visit (in seconds), and convert the
index to a DatetimeIndex. Use downsampling to calculate the average visit duration by minute,
and the average visit duration by hour. Plot both results on the same graph.

Elementary Time Series Analysis
Shifting

DataFrame and Series objects have a shift() method that allows you to move data up or down
relative to the index. When dealing with time series data, we can also shift the DatetimeIndex
relative to a time offset.

>>> df = pd.DataFrame(dict(VALUE=np.random.rand(5)),
index=pd.date_range("2016-10-7", periods=5, freq='D'))

>>> df
VALUE

2016-10-07 0.127895
2016-10-08 0.811226
2016-10-09 0.656711
2016-10-10 0.351431
2016-10-11 0.608767

>>> df.shift(1)
VALUE

2016-10-07 NaN
2016-10-08 0.127895
2016-10-09 0.811226
2016-10-10 0.656711
2016-10-11 0.351431

>>> df.shift(-2)
VALUE

2016-10-07 0.656711
2016-10-08 0.351431
2016-10-09 0.608767
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2016-10-10 NaN
2016-10-11 NaN

>>> df.shift(14, freq="D")
VALUE

2016-10-21 0.127895
2016-10-22 0.811226
2016-10-23 0.656711
2016-10-24 0.351431
2016-10-25 0.608767

Shifting data makes it easy to gather statistics about changes from one timestamp or period to
the next.

# Find the changes from one period/timestamp to the next
>>> df - df.shift(1) # Equivalent to df.diff().

VALUE
2016-10-07 NaN
2016-10-08 0.683331
2016-10-09 -0.154516
2016-10-10 -0.305279
2016-10-11 0.257336

Problem 5. Compute the following information about the DJIA dataset from Problem 1.

• The single day with the largest gain.

• The single day with the largest loss.

• The month with the largest gain.

• The month with the largest loss.

For the monthly statistics, define the gain (or loss) to be the difference between the DJIA on
the last and first days of the month.

Rolling Functions and Exponentially-Weighted Moving Functions

Many time series are inherently noisy. To analyze general trends in data, we use rolling functions
and exponentally-weighted moving (EWM) functions.

Rolling functions, or moving window functions, perform some kind of calculation on just a
window of data. There are a few rolling functions that come standard with pandas.

Rolling Functions (Moving Window Functions)

One of the most commonly used rolling functions is the rolling average, which takes the average value
over a window of data.
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# Generate a time series using random walk from a uniform distribution.
N = 10000
bias = 0.01
s = np.zeros(N)
s[1:] = np.random.uniform(low=-1, high=1, size=N-1) + bias
s = pd.Series(s.cumsum(),

index=pd.date_range("2015-10-20", freq='H', periods=N))

# Plot the original data together with a rolling average.
ax1 = plt.subplot(121)
s.plot(color="gray", lw=.3, ax=ax1)
s.rolling(window=200).mean().plot(color='r', lw=1, ax=ax1)
ax1.legend(["Actual", "Rolling"], loc="lower right")
ax1.set_title("Rolling Average")

The function call s.rolling(window=200) creates a pd.core.rolling.Window object that can
be aggregated with a function like mean(), std(), var(), min(), max(), and so on.

Exponentially-Weighted Moving (EWM) Functions

Whereas a moving window function gives equal weight to the whole window, an exponentially-weighted
moving function gives more weight to the most recent data points.

In the case of a exponentially-weighted moving average (EWMA), each data point is calculated
as follows.

zi = αx̄i + (1 − α)zi−1,

where zi is the value of the EWMA at time i, x̄i is the average for the i-th window, and α is the
decay factor that controls the importance of previous data points. Notice that α = 1 reduces to the
rolling average.

More commonly, the decay is expressed as a function of the window size. In fact, the span for
an EWMA is nearly analogous to window size for a rolling average.

Notice the syntax for EWM functions is very similar to that of rolling functions.
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Figure 10.1: Rolling average and EWMA.
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ax2 = plt.subplot(121)
s.plot(color="gray", lw=.3, ax=ax2)
s.ewm(span=200).mean().plot(color='g', lw=1, ax=ax2)
ax2.legend(["Actual", "EWMA"], loc="lower right")
ax2.set_title("EWMA")

Problem 6. Plot the following from the DJIA dataset with a window or span of 30, 120, and
365.

• The original data points.

• Rolling average.

• Exponential average.

• Minimum rolling values.

• Maximum rolling values.

Describe how varying the length of the window changes the approximation to the data.
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